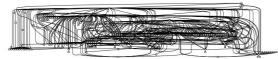

Improving Dependence Explosion by Dynamic Tag Update


Sanaz Sheikhi, Md Nahid Hossain, R.Sekar Secure System Labs

Dependence Explosion Problem

- Dependency graph captures casual relations between system entities (processes, files, sockets, ...)
- Used for attack detection and scenario reconstruction

- Dependence explosion: every output of a process becomes dependent on every earlier input operation.
- Long running processes cause dependence explosion and make the graph so huge.

Existing Approaches Drawbacks

- Fine-grained dependence tracking instrumentation of applications and/or OS code
- Model-assisted search manual effort to make model for all attacks
- Analyst-driven search manual effort to develop code for all attacks

Our Approach Tag Decay Tag Attenuation

Gradually lift data tag *d* of benign processes to a quiescent value.

Attenuate tags propagating from benign subjects to objects.

 $d = \max(d_0, d_0 * r^t + (1 - r^t) * T_a)$

obj.dtag = sub.dtag + a

Improved Attenuation and Decay

- Attenuation/Decay are Not affective on Windows audit data Observing broken data or specific behavior of processes in
- Windows.
- Solution: learning benign behavior of the system and update subject and object tags accordingly.
- Attenuation/Decay rates are dynamic regarding the training results.

Learning System Behavior

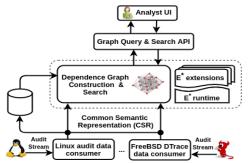
- Process profile: (proc_i, W_j, alarm_k, count) Number of each alarm, process generates in each time windows
- **Object Profile:** (*Object*_v W_{v} *event*_k *count*) Number of each event, happening on object in each time window

Dynamic Tag Update

Dynamic attenuation:

 W_{t} ratio of access (read/write) to the object based on the profile

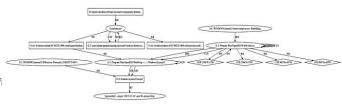
 $obj.datg' = obj.dtag + w_t$


Dynamic decay:

 r_t : ration of process activity in the time window based on the profi

Computer Science

Architecture



Evaluation

Datasets: DARPA TC Engagement 4 Datasets

Dataset	# of Events	Attacks
W1	45M	SSH/RDP, Phishing Powershell, FireFox Drakon
W_2	49M	Firefox Drakon, Code Injection

Scenario graph from W₂

